

Primary Contact:
Jesse Leitner/NASA GSFC Code 591
<u>Jesse.Leitner@nasa.gov</u>
301-286-2630

Julie Thienel/GSFC Code 595 Formation Flying Julie.Thienel@nasa.gov

The Core Components of Formation Flying - The Engineering Side

Formation Design and Initialization

Relative Navigation

Intersatellite Communications, Time Synchronization, and Time Transfer

Formation Control

Formation Design and Initialization

- The guidance problem for formations
 - What is the desired formation geometry over time?
- Driven directly by science mission needs
- Constrained by fuel consumption and physics
- Major driver for research in dynamics of relative motion
- Small errors in initialization can be very costly in fuel

Relative Navigation

- The measurements between spacecraft
- Sensors and algorithms
 - includes metrology systems and wavefront error sensing systems
- Driven by science mission needs or indirectly through other engineering requirements
- Performance verification required with sensor in the loop with high fidelity channel simulator
- Constrained by technology

Intersatellite Communications, Time Synchronization, and Time transfer

- The data bus of the formation
- Robustness and continuity is essential
- Primary development areas:
 - mass reduction
 - power reduction
 - cost reduction
 - integrated communication and ranging
- Substantial work needed in establishing requirements for communication bandwidth and time synch/time transfer for precision formation control performance

Formation Control

- The forces and moments required to regulate or track desired formation geometry
- Actuators and algorithms
- Autonomy and higher-level command and control
- Depends on all other components
- Principle driver for concepts such as 6DOF spacecraft control and closed-loop orbit control
- Responsible for rejecting disturbances and maintaining stability
- True system-level problem
- Constrained by technology and systems engineering challenges

October 14/15, 2004 FS

Formation Modes

- Lost-in-space/initial insertion
- Coarse vehicle placement
- Coarse vehicle orientation

- Formation initialization
 - VISNAV/CCD/APS/modified star tracker
 - Star trackers on mirror-craft all tracking same guide star

Capture

- Optics spacecraft to detector spacecraft optical (possibly RF) ranging required to get to 5 mm measurement accuracy
- Establish relative position using ranging and optical measurements
- Calibration (backing out system parameters)
- Maintenance
 - Continuous/near continuous thrusting (electric-type propulsion) on spacecraft
 - Optical ranging with modulating retro-reflectors

Formation Flying Components (Hardware - total for 2 S/C)

- Intersatellite communication transceivers (2)
 - possibly with fine ranging to eliminate next 2 items
- Laser (1 or 2)
- Modulating Retroreflectors (2-5)
- Fine Resolution Propulsion System (2)
- Coarse (VISNAV) Formation Sensor (1)
 - could be modified tracker already on-board for other purpose
- LED beacons (5-10)

Formation Flying Software

- Relative Navigation
 - Onboard absolute and real time relative navigation system
 - Adapting current onboard navigation system for multiple spacecraft poses biggest challenge
- Formation Control
 - More complex than typical attitude control system, requires 6
 DOF control
- Fault-tolerance, safety, collision avoidance
 - Define safety modes (e.g. 'safehold' operations), re-pointing of formation and sun avoidance, power, thermal issues

October 14/15, 2004 FS

Testbeds and Validation

- Mission Engineering and Systems Analysis Division at GSFC has a Formation Flying Testbed (FFTB) with hardware-in-theloop capabilities
- The FFTB is currently testing crosslink communications and formation control algorithms using multiple networked computers
- Need to verify integrated communication/relative navigation/formation control
 - Use FFTB and other locations (on availability basis)
 - Can be enhanced specifically for CON-X for about \$5M
 - Integrate beacon system
 - Enhance relative navigation/control algorithms

October 14/15, 2004 FS1

Extra Slides

October 14/15, 2004 FST–12

Technology-SOA, required, and projected

	· ·	Figure of Merit	ı J	
Required Capability	Now	CON-X	Long-term	Current TRL, CON-X performance
Number of Satellites (affects measurement, control, communications, and operations)	2 S/C, non- collaborative (LS-7/EO-1)	2	>30	9
Measure relative position	2 cm postprocessed (over 20,000 km measurement to GPS transmitter)	0.5 mm radial	< 1 nm on- board	2 cm: 6 < cm: 4
Measure S/C-S/C bearing angles (combination of relative attitude & 3 axis position)	N/A	0.5 asec roll, 3 asec, pitch and yaw	1 mas	4
Control relative position through comm. link	Rendezvous/Doc king, < 1m short range	5 mm	3 nm	3
Control S/C-S/C bearing angle	N/A	5 asec roll, 30 asec pitch and yaw	10 mas	2
Formation line-of-sight Control	N/A	16 asec (1 asec measurement)	100 nas	2
Inter-S/C Communication Rate	300 Mbps TDRSS	~150 kbps	3-10 Mbps	9
Constellation Operating Range	1 km	50 m	1-500 km	N/A
Formation Commanding	On-board, one spacecraft relative to other	On-Board, collaborative	On-Board, collab- orative	4
Autonomous collision avoidance	N	Y	Y	4
Precision of time synchronization	3 ns GPS, on- board real-time	1 μs	1 ps	9